THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4230 2024-25 Lecture 10 February 12, 2025 (Wednesday)

1 Recall

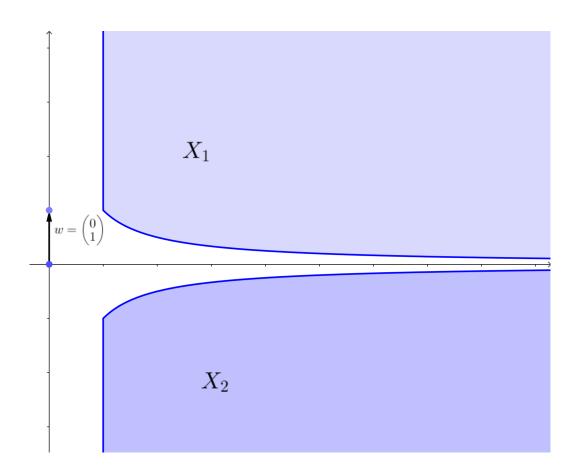
Yesterday, we mentioned the following example:

Example 1. If X_2 is not bounded, then the inequality may not be strict. See the following counterexample. Consider the following two sets:

$$X_1 := \left\{ (x, y) : x \ge 1, \ y \le -\frac{1}{x} \right\}$$
$$X_2 := \left\{ (x, y) : x \ge 1, \ y \ge \frac{1}{x} \right\}$$

If we choose $w = (0, 1)^T$, then

$$\sup_{x_1 \in X_1} w^T x_1 = 0 = \inf_{x_2 \in X_2} w^T x_2$$



Example 2. Consider

$$X_1 = \{(x, 0) : x \in [0, 1]\}$$
$$X_2 = \{(x, 0) : x \in [0, 2]\}$$

Then $X_1 \subseteq X_2$, so we cannot separate these two convex sets. If we choose w = (0, 1), then we still have

$$\sup_{x_1 \in X_1} w^T x_1 = 0 = \inf_{x_2 \in X_2} w^T x_2$$

Remarks. From the above two examples, we can see

$$\sup_{x_1 \in X_1} w^T x_1 < \inf_{x_2 \in X_2} w^T x_2 \quad \text{and} \quad \sup_{x_1 \in X_1} w^T x_1 \le \inf_{x_2 \in X_2} w^T x_2$$

are not good notions for separation.

2 Separation

Definition 1. X_1 and X_2 are **properly separated** by the linear form $w^T x$ if

$$\sup_{x_1 \in X_1} w^T x_1 \le \inf_{x_2 \in X_2} w^T x_2$$

and

$$\inf_{x_1 \in X_1} w^T x_1 < \sup_{x_2 \in X_2} w^T x_2.$$

Proposition 1. Let $X \subseteq \mathbb{R}^n$ be a non-empty convex set (not necessarily closed) and $y \notin X$. Then the following are equivalence:

- there exist $w \neq 0$ such that $w^T x$ separates properly X and $\{y\}$
- $\sup_{x \in X} w^T x \le w^T y$ and $\inf_{x \in X} w^T x < w^T y$.

Proof. 1. Assume that y = 0, then $Lin(X) = \mathbb{R}^n$. Let $\{x_i\}_{i \ge 1}$ is a dense subset of X. For each $n \ge 1$, we consider the set

$$\operatorname{Conv}\left(\left\{x_i, \ 1 \le i \le n\right\}\right)$$

is convex and closed, and $y = 0 \notin \text{Conv}(\{x_i, 1 \le i \le n\}) \subseteq X$. By the previous theorem, then there exists $w_n \neq 0$ such that

$$0 = w_n^T y > \max_{1 \le i \le n} w_n^T x_i \implies \frac{w_n^T y}{\|w_n\|} > \max_{1 \le i \le n} \frac{w_n^T x_i}{\|w_n\|}$$

Without loss of generality, we assume that $||w_n|| = 1$. Then there exists n_k such that $w_{n_k} \to w \neq 0$. Taking limit $n_k \to \infty$, we have $0 \ge \sup_{i\ge 1} w^T x_i$. Therefore, we have

Therefore, we have

$$\sup_{x \in X} w^T x = \sup_{i \ge 1} w^T x_i \le 0 = w^T y$$

because $\{x_i\}_{i=1,2,\dots}$ is dense in X.

2. If $\inf_{x \in X} w^T x = 0$, then it implies that $w^T x = 0$, $\forall x \in X$, that is $0 \neq w \perp \text{Lin}(X) = \mathbb{R}^n$. This is a contradiction. 3. Now, we discuss the additional condition. If $y \neq 0$, we consider the *shifting set*

$$\tilde{X} := \{x - y : x \in X\}$$

Then y is separated with $X \iff 0$ is separated with X.

- 4. If $\operatorname{Lin}(X) \neq \mathbb{R}^n$, then we have the following cases:
 - Case 1: y ∈ Lin(X)
 We replace ℝⁿ by Lin(X).
 - Case 2: y ∉ Lin(X)
 it is easy to separate {y} and a linear subspace.

Proposition 2. Let X_1 and X_2 be convex sets (not necessarily closed) such that $X_1 \cap X_2 = \emptyset$. Then X_1 and X_2 can be properly separated.

Proof. Let $X = X_1 - X_2 = \{x = x_1 - x_2 : x_1 \in X_1, x_2 \in X_2\}$. Then X is convex and $0 \notin X$. By the previous proposition, there exist $w \neq 0$ such that

$$\sup_{\substack{x_1 \in X_1 \\ x_2 \in X_2}} w^T (x_1 - x_2) \le w^T 0 = 0$$
$$\inf_{\substack{x_1 \in X_1 \\ x_2 \in X_2}} w^T (x_1 - x_2) < 0$$

This implies that X_1 and X_2 are properly separated by $w^T x$.

Theorem 3. Let X_1, X_2 be non-empty convex such that

$$\operatorname{ri}(X_1) \cap \operatorname{ri}(X_2) = \emptyset$$

Then X_1 and X_2 can be properly separated.

Proof. Let $\widetilde{X_1} = \operatorname{ri}(X_1)$, $\widetilde{X_2} = \operatorname{ri}(X_2)$. Then $\widetilde{X_1}$ is dense in X_1 and $\widetilde{X_2}$ is dense in X_2 , and $\widetilde{X_1} \cap \widetilde{X_2} = \emptyset$. By the previous theorem, there exist $w \neq 0$ such that

$$\sup_{x_1 \in X_1} w^T x_1 = \sup_{x_1 \in \widetilde{X_1}} w^T x_1 \le \inf_{x_2 \in \widetilde{X_2}} w^T x_2 = \inf_{x_2 \in X_2} w^T x_2$$

and

$$\inf_{x \in X_1} w^T x_1 = \inf_{x_1 \in \widetilde{X_1}} w^T x_1 < \sup_{x_2 \in \widetilde{X_2}} w^T x_2 = \sup_{x_2 \in X_2} w^T x_2$$

Remarks. The above theorem is an "if and only if" statement. If X_1 and X_2 can be properly separated, then $ri(X_1) \cap ri(X_2) = \emptyset$. We will prove the other direction next lesson.